Higher dimension partition principles in uncountable Hausdorff spaces

Joey Lakerdas-Gayle

University of Waterloo

BIRS - Infinite Structural Ramsey Theory November 24, 2025

Galvin's problem and Polish grids

Definition (Galvin's problem in dimension d)

 G_d is the statement: There is a bound $N<\omega$ such that for every finite colouring $c:[\mathbb{R}]^d\to k$, there exists $Y\subseteq\mathbb{R}$ homeomorphic to \mathbb{Q} such that $\left|c\left[[Y]^d\right]\right|\leq N$.

Inamdar (2024) proved that G_2 is true with N=2.

Definition (Polish grid principle in dimension d)

 PG_d is the statement: For every sequence (X_0,\ldots,X_{d-1}) of perfect polish spaces and every finite colouring $\gamma:\prod_{i< d}X_i\to k$, there exists somewhere dense subspaces $Y_i\subseteq X_i$ such that $\prod_{i< d}Y_i$ is monochromatic.

Galvin's problem and Polish grids

Theorem (Raghavan & Todorcevic, 2023)

$$2^{\aleph_0} \leq \aleph_{d-2} \implies \neg \mathsf{G}_d.$$

Theorem (Lambie-Hanson & Zucker, 2024)

$$2^{\aleph_0} \leq \aleph_{d-2} \implies \neg \mathsf{PG}_d$$
.

Goal: Find a family of partition principle (parametrized by dimension) that holds in every model of $2^{\aleph_0} \leq \aleph_{d-2}$ and implies $\neg \mathsf{G}_d$ and $\neg \mathsf{PG}_d$.

Unordered products

Definition

For sets A_0, \ldots, A_{d-1} , define the *unordered product*

$$\circledast_{i < d} A_i := \{\{a_0, \dots, a_{d-1}\} : a_i \in A_i, i \neq j \Rightarrow a_i \neq a_j\} \subseteq [\bigcup_{i < d} A_i]^d$$

Definition

 $\mathsf{B}_d^\circledast(\kappa)$ is the statement: For any Hausdorff space X with $|X|=\kappa$, there is a colouring $c:[X]^d\to\omega$ such that if $A_0,\ldots,A_{d-1}\subseteq X$ and each A_i is homeomorphic to \mathbb{Q} , then $c\left[\circledast_{i< d}A_i\right]=\omega$.

Theorem

$$n \leq d-2 \implies \mathsf{B}_d^\circledast(\aleph_n).$$

Taking
$$A_0 = \cdots = A_{d-1}$$
 and $X = \mathbb{R}$, we get $\mathsf{B}_d^{\circledast}(2^{\aleph_0}) \implies \neg \mathsf{G}_d$.

So
$$2^{\aleph_0} \leq \aleph_{d-2} \implies \mathsf{B}_d^{\circledast}(2^{\aleph_0}) \implies \neg \mathsf{G}_d$$
.

$$\mathsf{B}_d^\circledast(2^{\aleph_0}) \implies \neg \mathsf{PG}_d$$

$\mathsf{B}_d^\circledast(\kappa)$

For any Hausdorff space X with $|X| = \kappa$, there is $c : [X]^d \to \omega$ such that if $A_i \subseteq X$ are homeomorphic to \mathbb{Q} , then $c \left[\circledast_{i < d} A_i \right] = \omega$.

PG_d

For every sequence (X_0, \ldots, X_{d-1}) of perfect polish spaces and every finite colouring $\gamma: \prod_{i < d} X_i \to k$, there exists somewhere dense subspaces $Y_i \subseteq X_i$ such that $\prod_{i < d} Y_i$ is monochromatic.

- 1. Apply $\mathsf{B}_d^\circledast(2^{\aleph_0})$ to $X = \bigsqcup_{i < d} X_i$ to get $c : [X]^d \to \omega$.
- 2. If $Y_i \subseteq X_i$ is somewhere dense, then there is $A_i \subseteq Y_i$ homeomorphic to \mathbb{Q} and $c[\circledast_{i < d} A_i] = \omega$.
- 3. Define $c': \prod_{i < d} X_i \to \omega$ by $c'((x_0, \dots, x_{d-1})) = c(\{x_0, \dots, x_{d-1}\}).$ So $2^{\aleph_0} \le \aleph_{d-2} \implies B^{\circledast}_{d}(2^{\aleph_0}) \implies \neg PG_d.$

Summary

Question

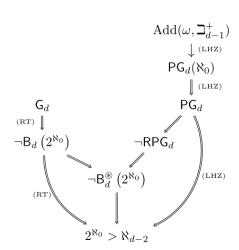
Is G_d consistent for any $d \ge 3$?

Question

Is it consistent that $2^{\aleph_0} > \aleph_{d-2}$ but $\neg PG_d$?

Question

Is it consistent that $\neg G_d$ and $\neg B_d$? That $\neg PG_d$ and $\neg RPG_d$?



Thank you!

T. Inamdar. A Ramsey theory for the reals. 2024. URL: https://arxiv.org/abs/2405.18431.

C. Lambie-Hanson and A. Zucker. Polish space partition principles and the Halpern-Läuchli theorem. *The Journal of Symbolic Logic*, 89(4):1798–1816, 2024.

D. Raghavan and S. Todorčević. Galvin's problem in higher dimensions. *Proc. Amer. Math. Soc.*, 151(7):3103–3110, 2023.

W. Sierpiński. Sur une problème de la théorie des relations. *Ann. Scuola Norm. Super. Pisa*, 2(2):239–242, 1933.